Objectives:

- Review inverse functions and define inverse trigonometric functions.
- Use implicit differentiation to find derivatives of inverse trigonometric functions.

Review of Inverse Functions:

To find the inverse of a function, reverse the roles of input and output.
If $f(a)=b$ then \qquad .
If $f(a)=f(c)=b$ for some $a \neq c$, we have a problem-what should $f^{-1}(b)$ be?
So, a function is only invertible if each input has a unique output. If a function has this nice quality, we say it is \qquad .

Graphically, a function is invertible if it passes the \qquad test.

If f is invertible and $f(a)=b$, then $f^{-1}(f(a))=$ \qquad and $f\left(f^{-1}(b)\right)=$ \qquad .

Inverse Trigonometric Functions:

Let's say we want to find an inverse function for $f(x)=\sin (x)$, which we will call \qquad .
First, we need to restrict the domain of $\sin (x)$ so that we have an invertible function:
The domain we choose is \qquad .
Note: Why choose this domain?

$\sin (x)$, restricted
Domain:
Range:

$\arcsin (x)$ Domain:

Range:

Another important way of understanding this function is that $y=\arcsin (x)$ means:

AND

Now we have a new function! How can we use it?
What should the angles be in a right triangle with a hypotenuse of 3 cm and one side that is $\sqrt{3} \mathrm{~cm}$?

Suppose the position of a particle is given by $s(t)=\sin (t)$. When is the particle at position $\frac{1}{2}$?

The derivative of $\arcsin (x)$:
To find the derivative of $\arcsin (x)$, we're going to use our sneaky technique of implicit differentiation:
First: Rewrite the equation for $\arcsin (x)$ in terms of $\sin (x)$:

Second: Differentiate both sides:

Third: Solve for $\frac{d y}{d x}$

Fourth: Substitute to find a way to express $\frac{d y}{d x}$ in terms of x.

In today's activity you'll see another way to use implicit differentiation to find the derivative of a trigonometric function.

The last inverse trigonometric function we'll see is $\arccos (x)$:

$\cos (x)$, restricted
Domain:
Range:

$\arccos (x)$
Domain:
Range:

To find the derivative, we'll use implicit differentiation again.

Derivatives of Inverse Trigonometric Functions:

$$
\begin{aligned}
\frac{d}{d x}(\arcsin (x)) & = \\
\frac{d}{d x}(\arccos (x)) & = \\
\frac{d}{d x}(\arctan (x)) & =
\end{aligned}
$$

Examples:

(a) Find the derivative of $f(x)=\arctan \left(x^{3}\right)$.
(b) $y=x^{2} e^{\arcsin (x)}$. Find y^{\prime}.

